-
آرشیو :
نسخه پاییز و زمستان 1399
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1251
-
موضوع :
موضوعی تعریف نشده!
-
نویسنده/گان :
حسن بهشتی سرشت
-
کلید واژه :
هیدروژل، الاستومر، ژل های پلیمری، پروالاستیسیته، پروویسکوالاستیسیته.
-
مراجع :
N.A. Peppas, A.R. Khare, Preparation, structure and diffusional behavior of hydrogels in controlled release, Adv. Drug Deliv. Rev. 11 (1993) 1–35. [1]
Tuszynski MH, Weidner N, McCormack M, Miller I, Powell H, Conner J. Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplantation.7(2):187. [2]
Fass JN, Odde DJ. Tensile force-dependent neurite elicitation via anti- 1 integrin antibody-coated magnetic beads. Biophysical journal. 2003;85(1):623-36. [3]
Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. The Journal of Chemical Physics. 1990; 93:4462. [4]
Heidemann SR, Buxbaum RE. Growth cone motility. Current opinion in neurobiology. 1991;1(3):339 [5]
Osada Y, Ross-Murphy SB. Intelligent gels. Scientific American. 1993;268(5):42- 7. [6]
Williams D F 2008 On the mechanisms of biocompatibility Biomaterials 29 2941–53 [7]
Eccleston GM. The design and manufacture of medicines. 3rd ed. Aulton’s Pharmaceutics, Churchill, Livingston, Elsevier; 2007. p. 598–605. [8]
Medaghiele M, Demitri C, Sannino A, Ambrosio L. Burn Trauma 2014:153–61. [9]
Beldon P. Wound Essentials 2010;5:140–4. [10]
Stashak TS. Clin Tech Equine Pract 2004;3:148–63. [11]
E. Caló, V. V. Khutornyanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal, Received 14 October 2014 , Received in revised form 17 November 2014 Accepted 19 November 2014, Available online 28 November 2014 [12]
Murphy PS, Evans GRD. Plast Surg Int 2012;2012:1–8. [13]
E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, Journal of Advanced Research, Received 14 March 2013, Received in revised form 7 July 2013 Accepted 8 July 2013, Available online 18 July 2013 [14]
Hoare TR, Kohane DS. Polymer 2008;49:1993–2007. [15]
Drury JL, Mooney DJ. Biomaterials 2003;24:4337–51. [16]
Chen J, Blevins WE, Park H, Park K. J Control Release 2000;64:39–51. [17]
Hunt JA, Chen R, van Veen T, Bryan N. J Mater Chem B 2014;2:5319–38. [18]
Jabbari E, Yaszemski MJ, Currier BL. EP 1 664 168 B1; 2006. [19]
Lee KY, Mooney DJ. Chem Rev 2001;101:1869–80. [20]
K.S. Anseth, C.N. Bowman, L. Brannon-Peppas, Mechanical properties of hydrogels and their experimental determination, Biomaterials 17 (1996) 1647-1657. [21]
Mooney M. A theory of large elastic deformation. J Appl Phys 1940;11:582–92. [22]
Rivlin R. Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos Trans Roy Soc Lond A: Math Phys Eng Sci 1948;241:379–97. [23]
Ogden R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc Roy Soc Lond A: Math Phys Eng Sci: Roy Soc 1972:565–84. [24]
Harvey Thomas Banks, Shuhua Hu and Zackary R. Kenz, A Brief Review of Elasticity and Viscoelasticity for Solids, Adv. Appl. Math. Mech., Vol. 3, No. 1, pp. 1-51. [25]
Biot, M.A., 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12 (2), 155–164. [26]
Flory, P.J., Rehner, J., 1943. Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys. 11 (11), 521–526. [27]
Wei Hong, Xuanhe Zhao, Jinxiong Zhou, Zhigang Suo, A theory of coupled diffusion and large deformation in polymeric gels , Journal of the Mechanics and Physics of Solids 56 (2008) 1779–1793 [28]
D. Caccavo , G. Lamberti, PoroViscoElastic model to describe hydrogels' behavior , Materials Science and Engineering C 76 (2017) 102–113 [29]
Flory, P.J., 1953. Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY. [30]
Feynman, R.P., Leighton, R.B., Sands, M., 1963. The Feynman Lectures on Physics. p. I-43-9. [31]
Shawn A. Chester; A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels, Soft Matter, 2012, 8, 8223 [32]
Mow,V.C., Kuei,S.C., Lai,W.M. and Armstrong,C.G., Biphasic creep and stress relaxation of articular cartilage compression: theory and experiments. Journal of Biomechanical Engineering, 1980, 102: 73-84. [33]
Kovach,I.S., A molecular theory of cartilage viscoelasticity. Biophysical Chemistry, 1996, 59: 61-73. [34]
Huang,C.-Y., Mow,V.C. and Ateshian,G.A., The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. Journal of Biomechanical Engineering, 2001, 123:410-417. [35]
Li,L.P., Herzog,W. and Korhonen,R.K., The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Medical Engineering & Physics, 2005, 27: 51-57. [36]
Leipzig,N.D. and Athanasiou,K.A., Unconfined creep compression of chondrocytes. Journal of Biomechan-ics, 2005, 38: 77-85. [37]
Cheng,S. and Bilston,L.E., Unconfined compression of white matter. Journal of Biomechanics, 2007, 40: 117-124. [38]
Ji,B. and Bao,G., Cell and molecular biomechanics: perspectives and challenges. Acta Mechanica Solida Sinica, 2011, 24: 27-51. [39]
Buehler,M.J., Multiscale mechanics of biological and biologically inspired materials and structures. Acta Mechanica Solida Sinica, 2010, 23: 471-483. [40]
Gibbs, J.W., 1878. The Scientific Papers of J. Willard Gibbs. pp. 184, 201, 215. [41]
E. Birgersson, H. Li, S. Wu, Transient analysis of temperature-sensitive neutral hydrogels, J. Mech. Phys. Solids 56 (2008) 444–466 [42]
M. Doi, Gel dynamics, J. Phys. Soc. Jpn. 78 (2009) 052001. [43]
J.C.Kurnia, E.Birgersson, A.S.Mujumdar, Finite deformation of fast response thermo-sensitive hydrogels, a computational study, Polymer 53 (2012) 2500–2508. 105 [44]
J.C. Kurnia, E. Birgersson,A.S. Mujumdar, Analysis of a model for pH-sensitive hydrogels, Polymer53(2012) 613–622 [45]
W.M.Lai,J.S.Hou,V.C.Mow,A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Eng. 113 (1991) 245–258. [46]
L. Feng, Y. Jia, X. Chen, X. Li, L. An, A multiphasic model for the volume change of polyelectrolyte hydrogels, J. Chem. Phys. 133 (114904) (2010) 114901–114908. [47]
D. Caccavo, S. Cascone, G. Lamberti, A.A. Barba, A. Larsson, Drug delivery from hydrogels: a general framework for the release modeling, Curr. Drug Delivery [48]
Yuhang Hu Zhigang Suo, VISCOELASTICITY AND POROELASTICITY IN ELASTOMERIC GELS, Acta Mechanica Solida Sinica, Vol. 25, No. 5, October, 2012 [49]
S.A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids 58 (2010) 1879–1906. [49]
W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct. 46 (2009) 3282–3289. [50]
W.Hong, X.Zhao, Z.Suo, Large deformation and electrochemistry of poly electrolyte gels, J. Mech. Phys. Solids 58 (2010) 558–577. [51]
J. Zhang, X. Zhao, Z. Suo, H. Jiang, A finite element method for transient analysis of concurrent large deformation and mass transport in gels, J. Appl. Phys. 105 (2009) 093522 [52]
Q.-M. Wang, A.C. Mohan, M.L. Oyen, X.-H. Zhao, Separating viscoelasticity and poroelasticity of gels with different length and time scales, Acta Mech. Sinica 30 (2014) 20–27. [53]
M.K. Kang, R. Huang, A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints, J. Appl. Mech. 77 (2010) 061004. [54]
A.Lucantonio, P.Nardinocchi, L.Teresi,Transient analysis of swelling-induced large deformations in polymer gels, J. Mech. Phys. Solids 61 (2013) 205–218. [55]
S.A. Chester, A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels, Soft Matter 8 (2012) 8223–8233 [56]
X.Wang,W.Hong, A visco-poroelastic theory for polymeric gels Proceeding of the Royal Society A: Mathematical, Physical and Engineering Science, 2012. [57]
X.Zhao,S.J.A.Koh,Z.Suo,Nonequilibrium thermodynamics of dielectric elastomers,Int. J.Appl.Mech.03(2011)203–217. [58]
X. Wang and W. Hong, A visco-poroelastic theory for polymeric gels, 2012 The Royal Society [59]
Reddy, J. R. 2008 An introduction to continuum mechanics. pp. 315–317. Cambridge, UK:Cambridge University Press [60]
Huggins, M.L., 1941. Solutions of long chain compounds. J. Chem. Phys. 9 (5), 440. [61]
Galli,M., Fornasiere,E., Gugnoni,J. and Oyen,M.L., Poroviscoelastic characterization of particle-reinforced gelatin gels using indentation and homogenization. Journal of the Mechanical Behavior of Biomedical Ma- terials, 2011,4:610-617 [62]
Mak,A.F., Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology, 1986, 23: 371-383. [63]
DiSilvestro,M.R. and Suh,J.-K.F., A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation and confined compression. Journal of Biomechanics, 2001, 34: 519-525. [64]
DiSilvestro,M.R., Zhu,Q., Wong,M., Jurvelin,J.S. and Suh,J.-K.F., Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I-Simultaneous prediction of reaction force and lateral displacement. Journal of Biomechanical Engineering, 2001, 123: 191-197. [65]
Wilson,W., van Donkelaar,C.C., van Rietbergen,B. and Huiskes,R., A fibril-reinforced poroviscoelastic swelling model for articular cartilage. Journal of Biomechanics,2005,38:1195-1204.458.ACTA MECHANICA SOLIDA SINICA 2012 [66]
Olberding,J.E.,and Suh,J.-K.F,A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel:potential application to hypercompliant soft tissues.Journal of Biomechanics,2006,39:2468-2475. [67]
Julkunen,P., Wilson,W., Jurvelin,J.S., Rieppo,J., Qu,C.-J., Lammi,M.J. and Korhonen,R.K., Stress- relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical re- sponse by tissue composition and structure. Journal of Biomechanics, 2008, 41: 1978-1986. [68]
Hoang,S.K. and Abousleiman,Y.N., Poroviscoelastic two-dimensional anisotropic solution with application to articular cartilage testing. Journal of Engineering Mechanics, 2009, 135: 367-374. [69]
Chiravarambath,S., Simha,N.K., Namani,R. and Lewis,J.L., Poroviscoelastic cartilage properties in the mouse from indentation. Journal of Biomechanical Engineering, 2009, 131: 011004. [70]
Raghunathan,S., Evans,D. and Sparks,J.L., Poroviscoelastic modeling of liver biomechanical response in unconfined compression. Annals of Biomedical Engineering, 2010, 38: 1789-1800 [71]
Hui, C.Y., Lin, Y.Y., Chuang, F.C., et al.: A contact mechanics method for characterizing the elastic properties and permeability of gels. J. Polym. Sci. Pt. B-Polym. Phys. 44, 359–370 (2006) [72]
Li, Y., Tanaka, T.: Kinetics of swelling and shrinking of gels. The Journal of Chemical Physics 92, 1365–1371 (1990). [73]
Zhao, X., Huebsch, N., Mooney, D.J., et al.: Stress-relaxation behavior in gels with ionic and covalent crosslinks. Journal of Applied Physics 107, 063509 (2010) [74]
Hu, Y.H., Zhao, X.H., Vlassak, J.J., et al.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010) [75]
Cai, S., Hu, Y., Zhao, X., et al.: Poroelasticity of a covalently crosslinked alginate hydrogel under compression. Journal of Applied Physics 108, 113514 (2010) [76]
Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.: Double- network hydrogels with extremely high mechanical strength. Advanced Materials 15, 1155–1158 (2003) 156 [77]
Zhao, X.H.: A theory for large deformation and damage of interpenetrating polymer networks. Journal of the Mechanics and Physics of Solids 60, 319–332 (2012) [78]
Wang,X.,Hong,W.:Pseudo-elasticity of a double network gel. Soft Matter 7, 8576–8581 (2011) [79]
Sengqiang Cai, Yuhang Hu, Xuanhe Zhao, and Zhigang Suo, Poroelasticity of a covalently crosslinked alginate hydrogel under compression, JOURNAL OF APPLIED PHYSICS 108, 113514 ,2010 [80]
Y. Hu, X. Zhao, J. Vlassak, and Z. Suo, Appl. Phys. Lett. 96, 121904 ,201. [81]
- صفحات : 10-24
-
دانلود فایل
( 1.05 MB )